
On a Theorem of Nehari and Quasidiscs

Martin Chuaqui

University of Pennsylvania

Abstract

Let f be a locally injective analytic map of the unit disc D and let {f, z} be its
Schwarzian derivative. Suppose |{f, z}| ≤ 2p(|z|). We use the classical connection
between Schwarzian derivative and second order linear equations to show that, for a
particular class of functions p, the image f(D) is a quasidisc. The analysis centers on
the differential equation y′′+ py = 0 and a finiteness condition of a positive solution y.
The proofs are based on Sturm comparison theorems. When p in the class is analytic
and x = 1 is a regular singular point of the linear equation, it is possible to obtain
precise information about Hölder continuity of f from considerations on the Frobenius
solutions at that point. The main result in this paper resolves the complementary case
in a general theorem of univalence of Nehari.

1. INTRODUCTION

Let f be analytic and locally univalent, and let {f, z} = (f ′′/f ′)′ − (1/2)(f ′′/f ′)2 be its
Schwarzian derivative. Two main features of the Schwarzian derivative are that all solutions
to {f, z} = 0 are given by fractional linear transformations T (z) = (az + b)/(cz + d) and
that {T ◦ f, z} = {f, z}. The second property is a consequence of the first and an important
addition formula for the Schwarzian derivative of a composition. There is a classical con-
nection between the Schwarzian derivative and second order linear equations: any solution
of {f, z} = 2p(z) is given by (au + bv)/(cu + dv), ad − bc 6= 0, where u, v are two linearly
independent solutions of the equation

y′′ + py = 0 . (1.1)

A well known fact that follows from this is that f is univalent on a given domain if and
only if any nontrivial solution of (1.1) vanishes at most once in the domain (see, e.g., [D]).
This characterization of univalence was systematically used by Nehari, who derived several
sufficient conditions for global injectivity. Briefly, estimates on the size of |{f, z}| together
with comparison theorems for the solutions of differential equations imply the absence of
multiple zeroes of nontrivial solutions of (1.1). In the unit disc D, some of the conditions of
this type that imply univalence are

|{f, z}| ≤ π2

2
(1.2)

|{f, z}| ≤ 2

(1− |z|2)2
(1.3)

|{f, z}| ≤ 4

1− |z|2
. (1.4)
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The constants π2/2, 2 and 4 are sharp in each case. All of these are particular instances of
the following general result due to Nehari (Theorem 1 in [N 2]):

Let p(x) ≥ 0 be an even function on (-1,1) such that (1 − x2)2p(x) is nonincreasing for
x > 0. Suppose that the solution y of

y′′ + py = 0 , y(0) = 1 , y′(0) = 0 (1.5)

does not vanish on (-1,1). If |{f, z}| ≤ 2p(|z|) then f is univalent in the unit disc.

With the choices for p as in (1.2), (1.3) and (1.4) the respective solutions of (1.5) are
given by cos(π

2
x),
√

1− x2 and 1− x2. The odd solution of the linear equation is

y(x)
∫ x

0
y−2(s)ds

and since the functions involved here are analytic on (-1,1) they extend to the unit disc.
Consequently

F (z) =
∫ z

0
y−2(ζ)dζ

gives in each case the extremal map with the normalizations F (0) = 0, F ′(0) = 1 and
F ′′(0) = 0.

By using standard comparison theorems for solutions of differential equations one can go
a step further and derive upper and lower bounds for |f | and |f ′| when f is normalized as
F and |{f, z}| ≤ 2p(|z|) [C-O].

In Nehari’s theorem p is assumed to be continuous, and for such p we will continue
to denote by F the associated function defined on (-1,1). Nehari also showed under what
circumstances the condition |{f, z}| ≤ 2p(|z|) is sharp. It states that if F (x)→∞ as x→ 1
then for any positive function r(x) on (-1,1) the condition

|{f, z}| ≤ 2p(|z|) + r(|z|)

is in general not sufficient for univalence (Theorem 2 in [N 2]).
In this paper we shall be concerned with the question of what happens when F (1) <∞.

Our main result is

THEOREM 1. Let p(x) ≥ 0 be an even function on (-1,1) with (1− x2)2p(x) nonincreasing
for x > 0. Suppose that the even solution y of (1.1) is positive and is such that∫ 1

0
y−2(x)dx <∞ .

If |{f, z}| ≤ 2p(|z|) then f(D) is a quasidisc.

A quasidisc is the image of D under some map which is quasiconformal in the entire
plane. Let Ω be simply-connected with its Poincaré metric λ(z)|dz|. A combined result
of Ahlfors and later Gehring gives a characterization of quasidiscs which is necessary and
sufficient: there exists a positive constant η such the inequality

|{φ, z}| ≤ ηλ2(z)
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implies that φ is univalent in Ω (see, e.g., [L]).

The function p in Theorem 1 is assumed to be continuous. As previously shown, there
are important cases when p is actually analytic and x = 1 is a regular singular point of
(1.1). This allows to simplify the analysis by considering the possible Frobenius solutions at
x = 1. The assumption that F (1) is finite implies that either y ∼ (1 − x)m as x → 1, for
some 0 < m < 1

2
, or else that y(1) > 0. In the latter case, the normalized function f will be

Lipschitz continuous on D while in the former case, it is possible to prove Hölder continuity.

I would like to thank C. Epstein for helpful discussions concerning the proof of Lemma
1.. The referee’s valuable comments allowed a simplification of the original proof and gave
greater clarity to other parts of the exposition.

2. PROOFS

The proof of Theorem 1 will be divided in a series of lemmas. In what follows, let p and
y satisfy the hypothesis of the theorem. Let α ∈ [0, 1). Most of the analysis ahead depends
on the solution u of

u′′ +
α

(1− x2)2
u = 0, u(0) = 1 , u′(0) = 0 . (2.1)

This function is given explicitly by

u(x) =
1

2

√
1− x2

{(
1 + x

1− x

)β
+
(

1− x
1 + x

)β}

where β = 1
2

√
1− α [K, p.492]. In particular,

u(x) ∼ (1− x)
1
2
−β , x→ 1

and therefore
∫ 1
0 u
−2(x)dx < ∞. Let µ = limx→1(1 − x2)2p(x). Clearly µ ≥ 0 and we claim

that µ < 1. If not then p(x) ≥ (1 − x2)−2. Let P (x) = (1 − x2)−2 so that the function
q(x) = p(x)− P (x) is non-negative. Then z(x) =

√
1− x2 satisfies

z′′ + Pz = 0, z(0) = 1 , z′(0) = 0 . (2.2)

Multiplying (2.2) by y, (1.5) by z, and subtracting, we get

z′′y − zy′′ = qyz .

We integrate this equation, using the initial condition on y and z, to obtain

(
z

y
)′(x) =

∫ x
0 (uqy)(s)ds

y(x)2
.

Hence ( z
y
)′ has the same sign as x and therefore y ≤ z on (-1,1) since z(0) = y(0) = 1. It

follows that either y vanishes on (-1,1) or else F (1) = ∞. This contradiction proves our
claim. Choose α such that µ < α < 1 and let now

q(x) = p(x)− α

(1− x2)2
.
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LEMMA 1. Let l = lim infx→1(1− x)(y′/y). Then −1
2
< l ≤ 0.

PROOF: Following an argument almost identical to the one given above, we can write

y′

y
=
u′

u
−
∫ x
0 (uqy)(s)ds

u(x)y(x)
. (2.3)

Since y′′ = −py ≤ 0 we have y′ ≤ 0 on (0,1) because of the initial condition. Hence l ≤ 0. On
the other hand, the limit of (1− x)(u′/u) as x→ 1 can be computed directly and it equals
−(1

2
− β). This, together with equation (2.3) and the fact that q(x) < 0 for x sufficiently

close to 1 imply the lemma.

By considering the graph of the function F it follows from elementary geometry that

lim
x→1

1− x
y2

= 0 .

LEMMA 2. There exists a constant M such that

F (1)− F (x) ≤M

(
1− x
y2

)
. (2.4)

PROOF: The derivative of the left hand side of (2.4) is −y−2 while the derivative of (1−x)y−2

is

−y−2(1 + 2(1− x)
y′

y
) .

Lemma 1 implies that 1 + 2(1− x)(y′/y) ≥ σ > 0 provided x is sufficiently close to 1. Hence
for all such x

F (1)− F (x) ≤ 1

σ

(
1− x
y2

)
and the lemma follows.

Now we state the key result in this chain.
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LEMMA 3. There exists a constant η > 0 such that the solution ϕ of

ϕ′′ + (p(x) +
η

(1− x2)2
)ϕ = 0, ϕ(0) = 1 , ϕ′(0) = 0 (2.5)

does not vanish on (-1,1).

PROOF: Let c = F (1). On the image interval (−c, c) we consider the “Poincaré density”

λ(w) =
1

F ′(x)(1− x2)
=

y2

1− x2

where w = F (x). We will show that for η > 0 sufficiently small the solution h of

h′′ + ηλ2(w)h = 0, h(0) = 1 , h′(0) = 0 (2.6)

is positive on (−c, c). By Lemma 2,

λ(w) =
y2

1− x2
≤ y2

1− x
≤ M

c− w
≤ 2Mc

c2 − w2
.

Thus it suffices to show that the solution of (2.6) with λ2(w) replaced by 4M2c2(c2 − w2)−2

does not vanish. This will be the case as long as 4M2η ≤ 1. To see this, we rescale. The
function h̄(x) = h(cx) solves h̄′′ + 4M2η(1 − x2)−2h̄ = 0 with even initial conditions. Then
h̄ > 0 on (-1,1) if and only if 4M2η ≤ 1 [K, p.492]. With h the positive solution of (2.6) we
define ϕ by

ϕ(x) = y(x)h(F (x)) .

A straightforward computation shows that ϕ is the solution of (2.5). This finishes the proof
of Lemma 3.

This lemma together with Nehari’s first theorem shows that

|{g, z}| ≤ 2(p(|z|) +
η

(1− |z|2)2
) (2.7)

is a sufficient condition for univalence. The proof of Theorem 1 is now quite simple. Assume
|{f, z}| ≤ 2p(|z|) and let λ(ζ)|dζ| be the Poincaré metric on Ω = f(D). We will show that

|{φ, ζ}| ≤ 2ηλ2(ζ)

implies the univalence of the map φ. Let g(z) = φ(f(z)). Then

{g, z} = {φ, f(z)}f ′(z)2 + {f, z}

and therefore
(1− |z|2)2|{g, z}| ≤ λ−2(ζ)|{φ, ζ}|+ 2(1− |z|2)2p(|z|)

where ζ = f(z). It follows that g satisfies (2.7), hence g and consequently φ are univalent.
This shows that Ω is a quasidisc.
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3. THE ANALYTIC CASE

In this section we shall assume that, in addition, p is analytic and that x = 1 is a regular
singular point of the equation (1.1). The assumptions on the even solution y are as before.
Recall that µ = limx→1(1−x2)2p(x). From the analysis of the possible Frobenius solutions at
x = 1 we will prove Hölder or Lipschitz continuity for maps f that satisfy |{f, z}| ≤ 2p(|z|).
Because of the invariance of the Schwarzian derivative under Möbius changes one can not
expect such a result unless f is properly normalized. The right normalization turns out to
be f ′′(0) = 0. Let u solve

u′′ +
1

2
{f, z}u = 0, u(0) = 1 , u′(0) = 0

and let
v(z) = u(z)

∫ z

0
u−2(ζ)dζ

be the solution with odd initial conditions. If f ′′(0) = 0 then

f(z) = f(0) + f ′(0)
∫ z

0
u−2(ζ)dζ .

From Lemma 2 in [C-O] it follows that if |{f, z}| ≤ 2p(|z|) then

|u(z)| ≥ y(|z|)

and therefore
|f ′(z)| ≤ |f ′(0)|y−2(|z|) .

We distinguish the cases µ > 0 and µ = 0. Suppose µ is positive. Then p(x) ≥ µ(1−x2)−2
and hence the function y must vanish at x = 1. The possible orders m of vanishing are given
by the roots of the inditial equation

m2 −m+
µ

4
= 0 ,

i.e.,

m1 =
1 +
√

1− µ
2

, m2 =
1−
√

1− µ
2

. (3.1)

Note that 0 < m2 <
1
2
< m1 < 1. Since m1 −m2 is not an integer both orders of vanishing

can occur [H].

THEOREM 2. Let f satisfy |{f, z}| ≤ 2p(|z|), f ′′(0) = 0 and suppose µ > 0. If F (1) is finite
then f is Hölder continuous on D with Hölder exponent

√
1− µ.

PROOF: The assumption that F (1) <∞ implies that y ∼ (1− x)m2 as x→ 1. Therefore

|f ′(z)| = O((1− |z|)−2m2) .

A standard technique of integrating along hyperbolic segments (see, e.g., [G-P]) gives

|f(z1)− f(z2)| = O(|z1 − z2|1−2m2) ,
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and the theorem follows.

Suppose now µ = 0. In this case, the roots of the inditial equation are 1 and 0. Hence
two linearly independent solutions are y1 = (1 − x)h1 and y2 = h2 + cy1 log(1 − x), where
h1, h2 are analytic and nonvanishing at x = 1 [H, Theorem 5.3.1].

THEOREM 3. Let f satisfy |{f, z}| ≤ 2p(|z|), f ′′(0) = 0 and suppose µ = 0. If F (1) is finite
then f is Lipschitz continuous on D.

PROOF: The finiteness condition and the discussion preceding the theorem imply that in
fact y cannot vanish at x = 1. Hence |f ′| is uniformly bounded.

The following situation describes accurately the case µ = 0. Let p(x) = 2(1− x2)−1 and
let pt(x) = tp(x), 0 ≤ t < 1. Since the inequality |{f, z}| ≤ 2p(|z|) is sufficient for univalence
then |{f, z}| ≤ 2pt(|z|) implies that f(D) is a quasidisc ( Theorem 6 in [G-P]). As mentioned
in the introduction, the even solution of (1.1) is in this case y = 1− x2. We claim that the
even solution yt of (1.1) with p replaced by pt must be positive at the endpoints. To show
this, let

Ft(z) =
∫ z

0
y−2t (ζ)dζ .

This function is odd and has Schwarzian derivative equal to 2pt(z). Therefore Ft(D) is a
quasidisc and hence Ft(1) < ∞, otherwise the point at infinity would be a point of self-
intersection of ∂Ft(D). This in turn would contradict the fact that ∂Ft(D) is a Jordan
curve. Since µt = tµ = 0 it follows that yt is a linear combination of the functions y1, y2 as
in the paragraph preceding the statement of Theorem 3.. Thus Ft(1) <∞ forces yt(1) > 0.

We consider finally examples for any µ ∈ (0, 1). For s ∈ (1, 2) let

p(x) = s
1− (s− 1)x2

(1− x2)2
.

Then µ = s(2− s) and the even solution of (1.1) is

y = (1− x2)
s
2 .

(The exponent s
2

corresponds to m1 in (3.1) and m2 = 2−s
2

.) This shows that the function
F has F (1) = ∞. On the other hand, by the argument given above, changing p to tp has
the effect of making Ft(1) finite. Consider now equation (3.1) with µ replaced by tµ. Since
yt ∼ (1− x)m1 , x→ 1, would make Ft(1) infinite, we conclude that the order of vanishing of
the solution yt must be the other root, m2.
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